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Calibration of an in-situ fluorescence based sensor

platform for reliable BOD5 measurement in wastewater

K. Khamis, C. Bradley, H. J. Gunter, G. Basevi, R. Stevens

and D. M. Hannah
ABSTRACT
Reliance on Biochemical Oxygen Demand (BOD5) as an indicator of wastewater quality has hindered

development of efficient process control due to the associated uncertainty and lag-times. Surrogate

measurements have been proposed, with fluorescence spectroscopy a promising technique. Yet,

assessment of in-situ fluorescence sensors across multiple Wastewater Treatment Plants (WwTPs),

and at different treatment stages, is limited. In this study a multi-parameter sonde (two fluorescence

peaks, turbidity, temperature and electrical conductivity) was used to provide a BOD5 surrogate

measurement. The sonde was deployed at three WwTPs, on post primary settlement tanks (PST) and

final effluent (FE). Triplicate laboratory measurements of BOD5, from independent laboratories were

used to calibrate the sensor, with high variability apparent for FE samples. Site and process specific

sensor calibrations yielded the best results (R2cv¼ 0.76–0.86; 10-fold cross-validation) and mean BOD5

of the three laboratory measurements improved FE calibration. When combining PST sites a

reasonable calibration was still achieved (R2cv¼ 0.67) suggesting transfer of sensors between WwTPs

may be possible. This study highlights the potential to use on-line optical sensors as robust BOD5

surrogates in WwTPs. However, careful calibration (i.e. replicated BOD5 measurements) is required

for FE as laboratory measurements can be associated with high uncertainty.

Key words | final effluent, high frequency monitoring, humic-like fluorescence, post primary

settlement, sensor calibration, tryptophan-like fluorescence, turbidity
HIGHLIGHTS

• A sensor calibration procedure for BOD5 measurement was assessed at three

wastewater treatment plants (WwTPs).

• Calibration for final effluent required replicated BOD5 sampling to reduce uncertainty.

• Calibration for post settlement was robust and suggested sensor transfer between

WwTPs is possible.

• Robust calibration for in-situ BOD5 monitoring can improve process control and

reduce pollution events.
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GRAPHICAL ABSTRACT
INTRODUCTION
Each year, over 300 km3 of wastewater is produced globally,

of which ∼60% is treated at wastewater treatment plants
(WwTPs; Wu et al. ). The flow through WwTPs is
typically characterised by high concentrations of organic

matter (OM), but organic load and composition vary
considerably across compressed spatiotemporal scales
(Niku & Schroeder ; Ebrahimi et al. ). The spatial

variability component is relatively predictable (i.e. is a func-
tion of treatment stage), while variability in time is generally
associated with daily and seasonal trends in water use but

can also respond to periodic additional inputs from storm-
water and drainage inflow (Bridgeman et al. ). These
variations in OM composition and flow volume can compli-
cate wastewater treatment processes, and present difficulties

in ensuring regulatory compliance. Some of these problems
are scale dependent, for example diurnal variations in waste-
water quality in small treatment plants can affect their

ability to remove nitrogen (Raboni et al. ). However,
the quality of influent (and effluent) wastewater can also
vary considerably depending upon the water source, which

complicates the treatment process (e.g. Imai et al. ).
These problems present ongoing challenges, particularly in
terms of how to improve water management systems,
reduce nutrient fluxes, and advance sustainable solutions

to increase the reuse of treated wastewater, particularly if
there are high concentrations of recalcitrant OM.

Improvements in wastewater treatment and optimis-

ation of the treatment process requires real-time
information on water quality. There have been a range of
om http://iwaponline.com/wst/article-pdf/doi/10.2166/wst.2021.197/891226/wst2021197.pdf
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potential monitoring solutions proposed, including biosen-

sors, microbial cells, bioreactors and optical sensors
(Bourgeois et al. ; Jouanneau et al. ). While improve-
ments in bioreactors have been apparent over the last

decade (e.g. BIOX-1010) the maintenance requirements
are still significant and measurement frequency is often
hours rather than minutes (Yu et al. ). Optical sensors

can be used to provide surrogates of OM quality and
quantity (Ulliman et al. ) in aerobic and anaerobic
wastewater treatment processes (Mesquita et al. ).

Commercial UV-VIS absorbance sensors (e.g. Spectrolyser
[s::can GmbH], Opus [Trios GmbH]) have been used suc-
cessfully in wastewater treatment plants for a number of
years reducing the need for manual sampling and laboratory

analyses (Chow et al. ). However, individual installations
may require site-specific calibrations and complications from
matrix effects have been observed (Rieger et al. ).

Recently, there has been considerable interest in waste-
water applications of fluorescence spectroscopy as the
technology yields immediate results, is relatively inexpen-

sive, reagentless and potentially has a lower minimum
detection limit than absorbance (Henderson et al. ;
Carstea et al. ). There have been examples of successful
wastewater applications using laboratory fluorescence spec-

troscopy based on excitation-emission matrix spectroscopy.
These have included characterisation of removed OM frac-
tions through derivatives of synchronous fluorescence

spectroscopy (Yu et al. ) and size exclusion chromato-
graphy (Ignatev & Tuhkanen ), the characterisation of
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effluent degradable or non-degradable derived OM (Choi

et al. ; Ulliman et al. ) and prediction of soluble
organic load (Goffin et al. ). However, field deployable
or online applications remain limited despite the potential

to be used as a proxy for standard water quality assessment
metrics (Carstea et al. ).

There is particular interest in reliable online surrogates
for Biochemical Oxygen Demand (BOD5; Reynolds &

Ahmad ; Hudson et al. ) a bioassay test widely
used in the water industry to quantify the concentration
of biodegradable organic compounds. While in-situ fluor-

escence monitoring has the potential to address the need
for real-time BOD5 data (Carstea et al. ), their appli-
cations in WwTPs remains challenging and has been

limited to date. For example, bio-fouling is problematic for
wastewater sensors in general requiring ongoing mainten-
ance to ensure data quality (Brito et al. ; Carstea et al.
). Moreover, short-term variations in turbidity, OM

and sediment composition may require the development of
site-specific algorithms with further complications from
matrix interference (Khamis et al. ; Khamis et al. ).
There is the additional requirement (for BOD5 estimates)
to calibrate sensor output against a parameter (BOD5)
which is itself subject to considerable error (Bridgeman

et al. ), thus violating the assumption that reference
measurements are free of bias (Rieger et al. ). Further-
more, the potential errors associated with transferring

calibration procedures and coefficients (in this case BOD5)
to different locations within a treatment works (e.g. post pri-
mary settlement to final effluent), and between treatment
works, is also uncertain.

Given the above, there is clearly a need to assess
rigorously the viability of commercially available multi-
wavelength fluorescence sensors for in-situ BOD

applications. Particularly if the need for time consuming
and expensive laboratory determinations of BOD5, which
also have significant associated error, can be reduced

(Bourgeois et al. ). There are, however, several key
research questions that constrain applications of in-situ
fluorescence spectroscopy for monitoring organic matter

in WwTPs. In particular how does uncertainty in laboratory
BOD5 estimation impacts on optical sensor calibration (i.e.
spatial variability)? How transferable sensor calibrations
are betweenWwTPs of differing size and treatment process?

Can modular monitoring platforms with additional measure-
ment sensors (e.g. temperature, turbidity, etc.) account for
confounding matrix effects such as turbidity?

In this article we investigate these research questions by
(i) quantifying the uncertainty in laboratory determinations
://iwaponline.com/wst/article-pdf/doi/10.2166/wst.2021.197/891226/wst2021197.pdf
of BOD5 for final effluent and settled sewage from three

WwTPs; (ii) creating robust calibration(s) for an in-situ
BOD sensor system and assessing the transferability of the
calibration(s) between WwTPs; (iii) Optimising the cali-

bration procedure (i.e. no. of samples/sampling occasions);
and (iv) Assessing the potential to use the sensor system
for treatment process control (i.e. Activated Sludge Process),
and as an online warning system of pollution (i.e. threshold

exceedance for final effluent).
METHODS

Site description

In-situ monitoring and sampling were conducted at three

WwTPs in the West Midlands, UK (∼52.3�N, 1.9�W),
between March 2019 and January 2020. The WwTPs have
been anonymised and will be referred to herein as Sites A,

B and C. herein. Site A (WwTP A) was the smallest of the
three sites (p.e.¼ 360) and primarily received household
waste mixed with surface runoff. Site B (WwTP B) received

sewage from a catchment with a population equivalent (p.e)
of ∼25,250. Flow into the site was derived from a variety of
sources, including household waste, surface runoff and
industrial waste. At site B the treatment pipe-line consisted

of primary settlement, followed by trickling filters, humus
tanks and occasionally sand filtration before the effluent
was discharged into the local watercourse. Treatment after

screening consisted of twin rotating biological contactors
before discharge into a local river. Site C (WwTP C) was a
large works (p.e¼ 93,500) which received water from a var-

iety of sources, including tankered waste from other works.
After screening and primary settlement the flow was split to
either a treatment track consisting of trickle bed-humus

tanks-sand filter or activated sludge treatment- sand filter.
No disinfection (e.g. chlorination) occurred before any of
the final effluent monitoring locations. Discharge consents
for the sites (i.e. flow and quality) are outlined in Table 1.

Sensors and sampling

A multiparameter sonde configured for BOD measurement
was used for all in-situ monitoring (Proteus, Proteus
Instruments, Worcestershire, UK). The Proteus had five sen-
sing elements comprising: (1) a fluorometer for measuring
tryptophan-like fluorescence (excitation wavelength [λex]

∼280 nm, emission wavelength [λem] ∼350 nm), (2) a
fluorometer for measuring humic-like fluorescence, herein
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referred to as fDOM, (λex ∼325 nm, λem ∼470 nm) (3) an

electrical conductivity sensor, (4) a turbidity sensor, (λ
850 nm), and, (5) a thermistor for temperature measurement
(temperature was only used to correct fluorescence measure-

ments). Prior to installation at each site, sensors were
cleaned using mild detergent and ultrapure water before
calibration following manufacturer specifications. Further
details of optical sensor properties (including linear range

and detection limits) are outlined in Table S1 (supplemen-
tary material).

Sites B and C had suitable deployment and sampling

locations after the Primary Settlement Tanks (PSTs) and
Final Effluent (FE) with monitoring only possible for the
FE at Site A. At each location the sensor was attached to

metal railings using a stainless steel chain and all sensing
elements were submerged to a minimum depth of 0.3 m
at a location that was well mixed with a representative
flow velocity. An auto sampler (Teledyne ISCO 6712,

Nebraska, USA for the first three sampling events, and Tel-
edyne ISCO 3700 thereafter) was used to collect discrete
water samples from the PST or FE. The inlet tube was situ-

ated in the flow at the same depth as the sensors and a
coarse strainer was fitted to ensure no blockage of the
tubing occurred during sample collection. Measurements

were taken using the Proteus every 5 minutes and the infor-
mation was relayed to a remote server through a custom
telemetry setup.

The auto sampler was synchronised with the Proteus
(internal clocks cross-referenced on each deployment) and
programmed to start sampling at 17:00 (UTC) on the
sampling day, and to continue at two hourly intervals until

09:00 the following morning, giving a total of 24 samples
(3 × 1 L sample bottles for each sample time). The auto sam-
pler was emptied at ∼09:00 on the day the auto sampler

program finished. Additional samples were obtained manu-
ally when technical staff were on site. Samples were kept on
ice and sent to three independent laboratories (10 samples

per laboratory) where BOD5 was determined according to
a standard methodology (Young et al. ). Full chain of
custody was ensured with samples temperature controlled

during transport and BOD5 analysis initiated within 24 h.
The sampling process was repeated three times per sampling
site to capture three examples of the diurnal demand cycle
(Table S2, supplementary material). The choice to use

three independent laboratories for BOD5 quantification
enabled us to decrease the influence of random lab errors
on the calibration model, which was particularly important

as a quality reference dataset is central to robust sensor cali-
bration (Rieger et al. ).
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Statistical analysis

The raw tryptophan-like fluorescence (TRYP) and fDOM
signals were temperature corrected using an equation out-

lined in Khamis et al. ():

Fref ¼
Fmes

1þ ρ(Tmes � Tref)
(1)

where F is the fluorescence signal (i.e. TRYP or fDOM) T is
temperature (�C) and subscripts mes and ref represent the

measured and reference values respectively. Following pre-
vious studies a reference temperature of 20 �C was chosen,
thus Tref¼ 20 �C and Fref is the fluorescence signal at 20 �C.
The temperature compensation factors (ρ) were chosen
based on Downing et al. () and Khamis et al. ().

The laboratory data were screened for outliers using

graphical tools (Zuur et al. ) and methods outlined by
Rieger et al. (). In total 36 samples (8% of total) were
removed due to significant variation from the mean (i.e.
20% following Lepot et al. ()) or trending in the opposite

direction to other samples (see Table S2 for more infor-
mation). To assess the accuracy of the BOD measurements,
readings from individual laboratories (Lab A, B and C)

were compared to the mean. A suite of goodness of fit metrics
were calculated using the HydroGoF package (Zambrano-
Bigiarini ) for each site and location, including:

1. Pearson’s correlation coefficient (r)
2. Square of the correlation coefficient (coefficient of deter-

mination; R2)
3. Root mean square error (RMSE)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

(x̂i � xi)
2

n

vuuut
(2)

4. The coefficient of variation (CV %)

CV % ¼ 100 ×
RMSE

�x
(3)

5. The slope of the Ordinary Least Squares regression fit (β).

For Equations (2) and (3), n is the number of samples in
the calibration set, x is the laboratory measured BOD5 con-
centration (mg L�1), x̂ is the calibrated Proteus BOD5

equivalent (mg L�1), and �x is the mean value of all labora-
tory BOD5 measurements in the given calibration dataset.
://iwaponline.com/wst/article-pdf/doi/10.2166/wst.2021.197/891226/wst2021197.pdf
The mean of the results from the laboratories were

combined with the raw sensor readings from the Proteus
(TRYP20, fDOM20, turbidity, and EC) for the corresponding
time interval. For a specific monitoring location or appli-

cation (e.g. wastewater PST or FE, river water) the
manufacturer provides a BOD5 ‘standard calibration’ for
the sonde based on a patented algorithm depending upon
the combination of individual sensors used. A site-specific

calibration is advised to improve the accuracy. This involves
the collection of discrete (parallel) samples across the likely
concentration range and composition variance (diel demand

cycle) which are subsequently analysed in the lab for the
parameter of interest (in this case BOD5).

Using the collected laboratory data a model selection

process was undertaken to optimise the in-situ parameter
set (i.e. Proteus sensor combination) for BOD5 estimation.
Given that monitoring occurred across multiple treatment
and process stages, models were developed based on

all the data and specified subsets. This included: (i) a
model for all treatment works and process stages combined
(n¼ 1), (ii) Models that were process stage specific but

combined over different sites (n¼ 2, PST or FE) and, (iii)
site and process stages specific models (n¼ 8). In addition
we explored the improvement in calibration based on the

mean of the three labs rather than BOD5 results from a
single lab (n¼ 11 × 4). The starting model was based on
the manufacturers’ patent protected algorithm:

ProBOD ¼ f(TRYP20)þ f(fDOM20)þ f(TRUB)þ f(EC) (4)

However, to avoid overfitting the models to the specific
data set we opted for a simple linear regression approach
with no higher order polynomials or interactions between

variables (Kuhn & Johnson ). Prior to model selection
and validation all predictor variables were normalised
using the Box-Cox transform and scaled (i.e. converted to

z-scores). The optimal model for each scenario outlined
above was identified using linear regression with backwards
stepwise selection (AICc – Akaike Information Criterion

modified for small sample sizes) and variable importance
was calculated. Due to the relatively small sample size
model performance was not assessed based on a training –

validation partition of the data as this would lack the

necessary power to facilitate valid judgments (Molinaro
et al. ). Instead, a 10-fold cross-validation approach
was adopted as this has been shown to produce appropriate

estimates of model performance (Kuhn & Johnson ).
Following Lepot et al. () an appropriate suite of model
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fit metrics were used to evaluate performance across all sites

and locations; specifically the mean coefficient of determi-
nation (R2

cv) and the root mean square error based on the
cross validation (RMSEcv).

We assessed the robustness of the Proteus calibration for
a given WwTP and treatment stage by resampling the data
(without replacement; n¼ 11–29) and assessing the good-
ness of fit with the observed data based on the reduced

calibration set. In addition the impact of the number of vari-
ables used to calibrate the Proteus BOD5 had on goodness
of fit was assessed. To do this linear models involving all

possible combinations of TRYP20, fDOM20, Turbidity and
EC were assessed with 10-fold cross validation and R2

cv

retained. All data analysis was undertaken using R version

3.3.3 with model selection undertaken using the Caret pack-
age based on information criteria (Kuhn ). Model
residuals were assessed using visual tools outlined in
(Zuur et al. ) and no violations of assumptions were

identified (e.g. normality or heteroscedasticity).
RESULTS AND DISCUSSION

Accuracy of laboratory BOD measurements

Of the 450 samples analysed for BOD5, 36 were removed fol-
lowing outlier screening due to either high deviation from the

group mean or trending in the opposite direction. Outliers
were not evenly distributed between the three labs with a
single laboratory accounting for 33 of the samples removed
(Lab B). This could be due to differences in technical staff

experience, the method used for dissolved oxygen measure-
ment or variability in the inocula used (Wilcock et al. ;
Fitzmaurice & Gray ). There was, however, general agree-

ment between the measurements of BOD5 from the different
laboratories used in this study,with strongpositive pairwise cor-
relations between all combinations when considering the full

dataset (r> 0.95, p< 0.001).When breaking down the relation-
ship into individual WwTPs and monitoring locations, greater
variability between labswas apparent forFE samples (Figure 1).

Deviations in the slopes of individual labs vs. the mean of all
labs were pronounced for FE (min – max β: �0.57–2.65), par-
ticularly for Sites A and C (Figure 1). While slopes for PST
monitoring locations showed little deviation from the 1:1 line

(min – max β: 0.96–1.02; Table 2). The RMSE was generally
lower for FE than PST and goodness of fit metrics were also
lower (randR2; Table 2).However, themeancoefficient of vari-

ation (CV %) for FE (35.1± 18.0%) compared to PST (16.2±
11.8%) highlights that between laboratory variability was
om http://iwaponline.com/wst/article-pdf/doi/10.2166/wst.2021.197/891226/wst2021197.pdf
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significantly increased for FE, exceeding the 20% variability

reported for internal laboratory comparisons (Jouanneau
et al. ). This measurement uncertainty highlights issues
with precision and repeatability of the BOD5 test at low con-

centrations (Khan et al. ) and is likely due to variability
in microbial populations used for inoculation (Jouanneau
et al. ). The variance in BOD5 results, particularly for
FE, highlights the need for replicate measurements when

attempting to calibrate online monitoring systems against an
uncertain reference parameter (Joannis et al. ).

In-situ parameter variability

When considering the data globally (i.e. all treatments

works and monitoring locations) correlations between the
parameters were all modest (r< 0.7; Figure 2), however,
when data were subset by site stronger relationships

between in-situ parameters were apparent. Correlation coef-
ficients were highest between TRYP20, CDOM20 and EC
and particularly so for Site A, where only FE was monitored
(Figure 2). There was significant variability between sites

and treatment stage for all monitored variables (Table 1).
Single sensor variable correlations with BOD5 were gener-
ally low, with the maximum observed at Site C for

turbidity (r¼ 0.74). The low correlations between fluor-
escence and BOD5 at the site scale reflect the variability
in the relationship between BOD5 and fluorescence at differ-

ent treatment stages. This is a function of the greater
reduction in BOD5 across the wastewater treatment process
relative to reductions in fluorescence (Christian et al. ).
For example, the reduction in BOD5 after primary clarifica-

tion can be up to an order of magnitude greater than that
observed for fluorescence (Christian et al. ; Li et al.
) and can vary significantly between treatment works

and treatment processes (Cohen et al. ).

In-situ BOD calibration

A global calibration model for all sites and treatment
locations combined yielded a high RMSEcv (41.3± 8.41

mg L�1) and relatively low R2
cv (0.55± 0.15), with significant

error at lower concentration (i.e. FE monitoring locations;
see Figure S1 supplementary material). When including site
and location (FE or PST) as additional covariates the var-

iance explained increased, hence, a location specific
calibration was explored. For PST an adequate global cali-
bration was achieved by pooling the samples from Sites B

and C. A linear relationship between calibrated Proteus
BOD and mean BOD5 was apparent (R2

cv¼ 0.67± 0.20;



Figure 1 | Relationship between BOD measurements from individual laboratories and the mean of all laboratory measurements. The dashed black line represents the 1:1 line and colours

denote the line of best fit for individual labs (Ordinary Least Squares). Note sites are ordered by increasing size (left-right¼ smallest-largest).

Table 2 | Goodness of fit metric for the relationship between individual laboratory BOD

data and the mean of the three laboratory measurements.

Fit metric
Site A
FE

Site B
FE

Site C
FE

Site B
PST

Site C
PST

Lab A RMSE 3.95 3.69 2.4 11.8 6.7
CV % 50.13 27.95 30.46 10.83 8.68
r 0.1 0.87 0.92 0.98 0.97
R2 0.01 0.75 0.84 0.96 0.95
β -0.02 1.32 -0.57 1.01 1

Lab B RMSE 5.19 3.82 4.23 9.54 12.18
CV % 65.86 28.94 53.68 8.75 15.78
r 0.94 0.54 0.98 0.99 0.95
R2 0.88 0.3 0.95 0.98 0.9
β 2.65 1.12 1.43 0.99 0.96

Lab C RMSE 2.43 2.38 0.76 13.03 13.12
CV % 30.83 18.03 9.64 11.95 16.99
r 0.46 0.85 0.68 0.98 0.93
R2 0.21 0.72 0.47 0.95 0.87
β 0.38 0.79 0.04 0.99 1.02

RMSE¼ root mean square error, CV %¼ coefficient of variation (see equation [4] for calcu-

lation method), r¼ Pearson correlation coefficient, R2¼ coefficient of determination and

β¼ slope of the fitted regression model (individual lab vs lab mean).
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Figure 3) with the best model consisting of all the input vari-

ables (Figure 4). Turbidity and TRYP20 were the most
important variables in the model (i.e. explained the most var-
iance) which is not surprising given turbidity provides a

robust indication of volatile solids and TRYP20 an indication
of soluble BOD (Nguyen et al. ; Goffin et al. ). The
RMSEcv was relatively high (35.8± 18.7 mg L�1) and is

likely a function of uncertainty inherent in the laboratory
measurement of BOD5 and differences in influent between
the two sites (Li et al. ). However, when considering

this as a coefficient of variation (CV¼ 29.8%) the deviation
is comparable to that reported for a fast respirometer based
online system (Iranpour & Zermeno ). Yet the respirom-
eter has a lag of hours before results are available compared

to the instantaneous measurement for the Proteus.
When pooling FE measurements from Sites A, B and C

the best calibration model involved fDOM20, EC and

TRYP20 (Figure 4). Interestingly fDOM was the most impor-
tant variable in the model which is likely due to the higher



Figure 2 | Scatter plot matrix of in-situ measurements and laboratory derived BOD measurements. Upper panels are Spearman’s correlation coefficients with colour denoting the site

specific correlations and global correlation for all data displayed in black. Diagonal is a histogram based on values recorded for the specified variables. TURB¼ turbidity.

fDOM20¼ temperature corrected humic-like fluorescence, TRYP20¼ temperature corrected tryptophan-like fluorescence and EC¼ electrical conductivity.

Figure 3 | Relationship between laboratory BOD and calibrated Proteus BOD measurements for (a) PST (post primary settlement) samples and (b) FE (final effluent) samples. Colour

denotes the monitoring site (model structure is detailed in the text). Error bars represent± SD based on 10-fold cross validation with 100 repeats.
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fDOM concentrations recorded for site A (see Table 1). A

weak linear relationship between the calibrated Proteus
measurement and mean BOD5 was apparent (R2

cv¼ 0.37±
0.21) with deviation from the lab measurements
om http://iwaponline.com/wst/article-pdf/doi/10.2166/wst.2021.197/891226/wst2021197.pdf
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(RMSEcv¼ 3.63± 0.79 mg L�1; CV¼ 39.9%), particularly

for Site C where there was consistent overestimation of
BOD5 concentration (Figure 3(b)). This variability could rep-
resent differences in treatment efficiency and processes



Figure 4 | Variable importance (t. value) for the parameters retained in the best Proteus BOD calibration model. Colours denote site (as in Figure 4) with grey used for models where data

were combined across multiple sites. TURB¼ Turbidity, EC¼ electrical conductivity, TRYP20¼ temperature corrected tryptophan-like fluorescence and fDOM20¼ temperature

corrected humic-like fluorescence.
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between the WwTPs (i.e. all sites had differing treatment
processes). It could also be a function of differing amounts
of recalcitrant vs labile organic compounds remaining in

the FE leading to site difference in the relationship between
fluorescence and BOD5 (Dubber & Gray ).

Site specific calibration

Given that there was still significant uncertainty associated

with the calibration models developed for the global and treat-
ment stage specific datasets, we explored site-specific
calibration procedures. This approach was anticipated to

improve fit, precision and long-term stability as the coefficients
were calculated for a specific wastewater matrix (Rieger et al.
). For the five site-treatment stage combinations, improve-
ments in fit were observed between sensor and lab data when

compared to the global and treatment specific calibrations (All
R2
cv >0.60; Figure 5). The fits were comparable to those

obtained for local calibrations at various WwTPs and sewage

monitoring locations using UV absorbance sensors, with full
spectral scans and partial least square models (Lepot et al.
://iwaponline.com/wst/article-pdf/doi/10.2166/wst.2021.197/891226/wst2021197.pdf
) and using Excitation Emission Matrix spectroscopy
with peak picking (Goffin et al. ).

There were differences in goodness of fit when compar-

ing models that were based on BOD5 data from individual
labs (Table 3). This was most pronounced for FE with the
lab mean consistently providing the better fit, except for

Site C. Compared to the global FE calibration, the CV was
∼50% lower at Sites A and B but was still high for Site C
(CV¼ 61.6%). The elevated CV for Site C FE may have

been due to the turbulent flow conditions at the only suitable
installation location. Subsequently, there was likely interfer-
ence with optical measurements due to bubbles and foam.
An alternative installation configuration to overcome this

issue would be a to use a pump through flow cell, however
fouling is then a major issue and comparison with other
sites difficult (Bourgeois et al. ). In addition, for Site C

FE, there were issues with laboratory measurements from
Lab C (i.e. had a substantially elevated RMSEcv and CV
compared to models based on Labs A or B).

For PST, the site-specific calibration led to a less pro-
nounced improvement in goodness of fit relative to the



Figure 5 | Relationship between laboratory BOD and calibrated Proteus BOD measurements for each monitoring location based on either samples from a single laboratory or the mean of

all the laboratory measurements. Colour denotes the treatment works and shape the stage in the treatment process. The calibration model used is described in the text. Error

bars represent ±SD based on 10-fold cross validation with 100 repeats. Note sites are ordered by increasing size (left-right¼ smallest-largest).
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global PST calibration, for example a 25.9% increase in

RMSE was apparent for Site B while a 64.0% reduction
was observed for Site C. The calibration models based on
BOD5 measurements from a single lab were similar in

terms of fit (Table 3), further highlighting that the BOD5

test is only repeatable at high concentrations or when ade-
quate microbial communities are present in the sample to

offset variations in inocula (Jouanneau et al. ).
When considering the variables retained in the best

model for a given site-treatment location, turbidity and

tryptophan-like fluorescence were most frequently included
(Figure 4). This is not surprising given the body of work
highlighting correlations between tryptophan-like fluor-
escence and BOD5 (Reynolds & Ahmad ; Carstea

et al. ) and also links between turbidity and the particu-
late BOD load which often represents 60–80% of total BOD
in wastewater (Bukhari ). At Site C, EC was also

included in the best calibration models, while all four sen-
sors, including fDOM, were used in the best model for Site
om http://iwaponline.com/wst/article-pdf/doi/10.2166/wst.2021.197/891226/wst2021197.pdf
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A FE (Figure 4). These exceptions are interesting as the cor-

relation between fDOM (humic-like fluorescence) and
BOD5 in WwTPs is generally less strong than for trypto-
phan-like fluorescence (Yang et al. ), but recent work

has highlighted this fluorescence peak is less prone to
quenching associated errors – particularly those associated
with high nitrate/nitrite concentrations (Sgroi et al. b).
The inputs of tankered waste and mixed liquors at Sites B
and C would likely lead to large swings in nitrate which
could explain why EC (a potential surrogate of effluent

strength; Suresh et al. ) is a usual addition to the par-
ameter suite for BOD5 quantification.

Resampling of the data indicated that the calibrations
were robust for all sites with an asymptote in model fit

reached at ∼20 samples for all sites (Figure 6). However, it
is important to note the increased noise in the FE samples
which suggests more samples may be required for calibration

compared to PST monitoring locations. Interestingly, this
asymptote at 20 samples is comparable to a study of



Table 3 | Mean goodness of fit (R2cv), RMSEcv and coefficient of variation for Proteus BOD5 prediction based on BOD results reported from a single lab or a mean of all laboratories

Location Site(s) GOF Metric Lab A Lab B Lab C Lab mean

All R2
cv 0.54± 0.15 0.58± 0.14 0.56± 0.12 0.55± 0.15

RMSEcv 39.9± 8.51 38.9± 6.7 40.4± 8.43 41.3± 8.41

CV % 100.1± 20.1 74.1± 16.9 94.7± 22.7 94.7± 20.3

PST All R2
cv 0.63± 0.22 0.6± 0.25 0.71± 0.2 0.67± 0.20

RMSEcv 42.8± 22.5 37.8± 17.1 38.9± 24.2 35.8± 18.7

CV % 36.0± 21.2 31.5± 19.1 32.4± 23.6 29.8± 21.9

FE All R2
cv 0.56± 0.18 0.36± 0.23 0.34± 0.21 0.37± 0.21

RMSEcv 3.17± 0.84 8.59± 2.83 4.51± 1.60 3.63± 0.79

CV % 38.3± 10.2 70.9± 23.9 53.2± 19.1 39.9± 9.5

FE Site A R2
cv 0.72± 0.34 0.6± 0.35 0.7± 0.34 0.84± 0.24

RMSEcv 1.35± 0.76 10.5± 9.14 1.55± 0.84 1.54± 0.64

CV % 18.8± 23.4 99.99± 89.5 25.8± 14.3 18.8± 8.2

FE Site B R2
cv 0.76± 0.31 0.69± 0.31 0.79± 0.26 0.84± 0.25

RMSEcv 2.29± 0.98 4.39± 1.90 3.89± 2.44 2.38± 0.96

CV % 18.4± 8.4 30.8± 18.2 24.9± 15.4 17.5± 7.5

FE Site C R2
cv 0.61± 0.4 0.69± 0.36 0.65± 0.36 0.76± 0.31

RMSEcv 0.75± 0.41 1.22± 0.78 3.99± 4.78 3.57± 9.4

CV % 8.0± 5.1 18.5± 9.3 96.3± 115.1 61.6± 161.9

PST Site B R2
cv 0.78± 0.27 0.85± 0.22 0.71± 0.33 0.89± 0.19

RMSEcv 55.0± 48.7 41.5± 27.7 53.1± 43.2 45.1± 35.5

CV % 48.7± 41.9 38.6± 25.2 42.6± 26.5 40.0± 28.0

PST Site C R2
cv 0.85± 0.25 0.89± 0.18 0.86± 0.21 0.88± 0.19

RMSEcv 16.4± 11.1 12.3± 5.05 16.4± 7.40 12.8± 5.19

CV % 23.7± 17.2 14.7± 5.9 20.8± 8.9 16.4± 6.9
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calibration requirements for spectral analysers measuring
chemical oxygen demand on combined sewage overflows
(Caradot et al. ).

A second modelling process to assess the impact of the
number of variables used to build the calibration model
highlighted that increasing this number generally increased

the fit, with the exception of Site B PST and Site C FE
(Figure 7). However, when more than two sensors inputs
were included in the calibration function the improvement

in fit (here considered in terms of R2 values) was minimal
(Figure 7). Given that treatment works generally display
similar final effluent composition regardless of the treatment
process (Quaranta et al. ), the different calibration

requirements for final effluent sites is surprising (see
Figure 4) and is likely a function of increased variability in
influent flow volume and composition at smaller treatment

works (Boller ). This can potentially lead to the loss of
biomass, particularly following low flow conditions, which
://iwaponline.com/wst/article-pdf/doi/10.2166/wst.2021.197/891226/wst2021197.pdf
in turn impacts treatment processes by changing the
matrix and the relationship between sensor parameters
and BOD5 concentration (Kegebein et al. ). Hence, all

four sensor inputs retained in the best model for Site A
(p.e.¼ 360).

Recommendations and future directions

This study has identified some important points regarding

calibration of in-situ sensors for monitoring organic load
in wastewater. First, the need for a site-specific calibration
is more pronounced for FE BOD5 monitoring applications
when compared to PST and doing so improves the cali-

bration accuracy – similar to patterns observed for other
spectral sensors for COD monitoring (Lepot et al. ).
Second, the challenges associated with calibration against

a parameter which is associated with considerable error
(Bridgeman et al. ), were a particular problem for FE



Figure 6 | R2 values based on model coefficients obtained by resampling (100 draws without replacement) the laboratory data (n¼ 10–30) and corresponding sensor measurements. For

each permutation, the coefficients were used to calculate the calibrated BOD5 value based on all the data for each site-treatment stage (i.e. 30 samples). Note sites are ordered

by increasing size (left-right¼ smallest-largest).
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monitoring (Table 2). The poor agreement between lab

measurements and subsequently high uncertainty in BOD5

concentration can be overcome to some degree with careful
initial calibration (i.e. mean BOD measurement based on

multiple labs and/ or repeat measurements; Table 3).
Third, installation issues can lead to greater uncertainty in
the calibration, particularly when the only available moni-

toring locations are not ideal for sensor deployment. For
example in this study access to the FE at Site C was limited
to a single location with highly turbulent conditions. Hence,

this was not ideal for optical sensor measurements as
bubbles can cause spurious readings and may be the
reason for the low correlation at this site. This can also be
an issue at smaller WwTPs where the flow depth may not

be sufficient for submersible sensor deployment. In both
these scenarios a flow cell deployment may be feasible
where water is pumped from the FE to the sensor deployed

bankside. This type of installation was beyond the scope of
this study, particularly as this would have added an extra
om http://iwaponline.com/wst/article-pdf/doi/10.2166/wst.2021.197/891226/wst2021197.pdf
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factor to our analysis (deployment method), but it is

clear further work is needed to assess the maintenance
requirements and comparability of flow cell relative to sub-
mersible deployments.

Online high frequency monitoring of BOD (e.g. sub-
hourly; Figure 8) can provide new information on treatment
process dynamics and efficiency, demand cycles, and ensure

compliance to environmental discharge permits (Yuan et al.
). Furthermore, data can be used to calibrate and
improve wastewater models (Martin & Vanrolleghem )

and provide information on how treatment processes
respond to changing climate extremes thus guide mitigation
and adaptation strategies (Zouboulis & Tolkou ;
Kirchhoff & Watson ). Unlike single measurement

parameter systems, such as nitrate or dissolved oxygen,
multi-parameter monitoring systems (e.g. Proteus) can gen-
erate new knowledge beyond that of the initial process

interest and inform more widely on WwTPs operation (Cor-
ominas et al. ).



Figure 7 | Goodness of fit (R2) for the best model as a function of the number of variables (sensor inputs) used. Error bars represent 1 SD based on 10-fold cross validation with 100

repeats.

Figure 8 | Calibrated in-situ BOD5 measurements based on a site-specific calibration (mean BOD5 of the three labs) for PST at Site C (autumn 2019). The green dots represent the laboratory

measurements of BOD and the black line the fitted model. Dates are in the format DD-MM.
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It is important to consider factors that can influence flu-

orescence based sensor measurements, particularly
temperature, turbidity, inner filtering and nitrate/nitrate inter-
ference (Sgroi et al. b). While the monitoring platform

here tested included temperature and turbidity sensors
future modifications to include nitrate and absorbance
://iwaponline.com/wst/article-pdf/doi/10.2166/wst.2021.197/891226/wst2021197.pdf
sensors may improve measurement accuracy. In addition

not all organic compounds are chromophoric (e.g. carbo-
hydrates and saturated hydrocarbons; Vanrolleghem & Lee
). We suggest, future work should focus on sensor per-

formance across WwTPs with varied influent (i.e. trade,
industrial-dominated and municipal), treatment processes
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(i.e. impact of disinfection processes on sensor measure-

ments; (Sgroi et al. a) and the response to ‘shock’ loads
from industrial sources as these are likely to have a higher
contribution of non-chromophoric compounds. Finally, a

wider assessment of maintenance requirements is needed as
deployments in this study lasted ∼14 days (Schneider et al.
). Despite this relatively short deployment it was clear
that maintenance requirements for FE locations were less

than for PST deployments. For the later the wiper required
regular inspection and cleaning (i.e. every couple of days)
to ensure fouling did not occur.
CONCLUSIONS

This assessment of the performance of an in-situ optical moni-
toring platform highlights the potential to use multi-parameter

instruments as reliable BOD5 surrogates across a range of
WwTPs (size and type of works) and treatment stages. We
have addressed the objectives outlined in the introduction,
and have generated new insight into the calibration of fluor-

escence based multi-parameter probes, specifically:

i. The uncertainty associated with laboratory measure-

ment of BOD5 is greater for final effluent (FE) than
settled sewage (PST), hence, local calibration and repli-
cated FE sampling may be required to gain reliable

datasets for process instrument calibration;
ii. It is possible to create robust site and process stage

specific calibrations. However, a global FE calibration

had relatively low predictive power compared to PST.
This suggests sensors can be moved between PST
sites/WwTPs and represents a desirable attribute of an

online process sensor as calibration can be labour inten-
sive and costly;

iii. For a robust calibration a minimum of 20 laboratory
samples, spanning at least two diel demand cycles, is

suggested. In addition, it appears a larger suite of moni-
toring variables are required for FE (i.e. TRYP, fDOM,
Turbidity and EC) relative to PST (i.e. TRYP and

Turbidity).
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